Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP.

نویسندگان

  • José González-Alonso
  • David B Olsen
  • Bengt Saltin
چکیده

Blood flow to contracting skeletal muscle is tightly coupled to the oxygenation state of hemoglobin. To investigate if ATP could be a signal by which the erythrocyte contributes to the regulation of skeletal muscle blood flow and oxygen (O2) delivery, we measured circulating ATP in 8 young subjects during incremental one-legged knee-extensor exercise under conditions of normoxia, hypoxia, hyperoxia, and CO+normoxia, which produced reciprocal alterations in arterial O2 content and thigh blood flow (TBF), but equal thigh O2 delivery and thigh O2 uptake. With increasing exercise intensity, TBF, thigh vascular conductance (TVC), and femoral venous plasma [ATP] augmented significantly (P<0.05) in all conditions. However, with hypoxia, TBF, TVC, and femoral venous plasma [ATP] were (P<0.05) or tended (P=0.14) to be elevated compared with normoxia, whereas with hyperoxia they tended to be reduced. In CO+normoxia, where femoral venous O2Hb and (O2+CO)Hb were augmented compared with hypoxia despite equal arterial deoxygenation, TBF and TVC were elevated, whereas venous [ATP] was markedly reduced. At peak exercise, venous [ATP] in exercising and nonexercising limbs was tightly correlated to alterations in venous (O2+CO)Hb (r2=0.93 to 0.96; P<0.01). Intrafemoral artery infusion of ATP at rest in normoxia (n=5) evoked similar increases in TBF and TVC than those observed during exercise. Our results in humans support the hypothesis that the erythrocyte functions as an O2 sensor, contributing to the regulation of skeletal muscle blood flow and O2 delivery, by releasing ATP depending on the number of unoccupied O2 binding sites in the hemoglobin molecule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired skeletal muscle blood flow control with advancing age in humans: attenuated ATP release and local vasodilation during erythrocyte deoxygenation.

RATIONALE Skeletal muscle blood flow is coupled with the oxygenation state of hemoglobin in young adults, whereby the erythrocyte functions as an oxygen sensor and releases ATP during deoxygenation to evoke vasodilation. Whether this function is impaired in humans of advanced age is unknown. OBJECTIVE To test the hypothesis that older adults demonstrate impaired muscle blood flow and lower in...

متن کامل

Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit

Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...

متن کامل

Erythrocyte-dependent regulation of human skeletal muscle blood flow: role of varied oxyhemoglobin and exercise on nitrite, S-nitrosohemoglobin, and ATP.

The erythrocyte is proposed to play a key role in the control of local tissue perfusion via three O(2)-dependent signaling mechanisms: 1) reduction of circulating nitrite to vasoactive NO, 2) S-nitrosohemoglobin (SNO-Hb)-dependent vasodilatation, and 3) release of the vasodilator and sympatholytic ATP; however, their relative roles in vivo remain unclear. Here we evaluated each mechanism to gai...

متن کامل

Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle.

Despite increases in muscle sympathetic vasoconstrictor activity, skeletal muscle blood flow and O2 delivery increase during exercise in humans in proportion to the local metabolic demand, a phenomenon coupled to local reductions in the oxygenation state of haemoglobin and concomitant increases in circulating ATP. We tested the hypothesis that circulating ATP contributes to local blood flow and...

متن کامل

Role of resistance training with the approach of blood flow restriction in skeletal muscle cell growth

Background: The aim of this study was to investigate the response of ERK1/2 protein and muscular morphological adaptations to a period of resistance training with local blood flow restriction. Materials and methods: Twenty healthy male Wistar rats without clinically evident disease (5 weeks old, 120±7 g weight) were divided into four equal groups: control, control with limited blood flow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 91 11  شماره 

صفحات  -

تاریخ انتشار 2002